a2 United States Patent

Williams et al.

US009081792B1

US 9,081,792 B1
Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(1)
(52)

(58)

(56)

OPTIMIZING BACKUP OF WHITELISTED

FILES

Applicant: STORAGECRAFT TECHNOLOGY
CORPORATION, Draper, UT (US)

Inventors:

Stephen Williams, South Jordan, UT

(US); Nathan S. Bushman, Springville,
UT (US)

Assignee:

STORAGECRAFT TECHNOLOGY

CORPORATION, Draper, UT (US)

Notice:

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.:
Filed:

Int. Cl1.
GO6F 17/30
U.S. CL
CPC

14/577,152

Dec. 19, 2014

(2006.01)

GO6F 17/30156 (2013.01)

Field of Classification Search

None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,765,173 A *
7,024,581 B1*
7,996,371 B1*
8,521,692 B1*

Whitelist Analysis Phase 302
r312

6/1998 Caneetal. ... 707/640
4/2006 Wangetal. .. o 71472
82011 Deshmukh 707/692
82013 Ogata 707/640

Identifying a set of allocated blocks
in a source storage at a paint in time

Identifying whitelisted files
that are already stored in
a deduplication storage

Analysis Phase 304 |

Are any blocks in the pruned
set of allocated blocks duplicated
in the deduplication storage?

Yes

8,572,163 B1* 10/2013 Bromley etal. 709/203

8,751,515 B1* 6/2014 Xingetal. .. 707/755

8,849,768 B1* 9/2014 Agrawal 707/664

8,949,208 B1* 2/2015 Xuetal 707/698
2008/0235299 Al* 9/2008 Haselton et al. . .. 707/204
2008/0243879 Al* 10/2008 Gokhaleetal. 707/100
2009/0164529 Al* 6/2009 McCain 707/204
2009/0249005 Al* 10/2009 Bender et al .. 7117162
2011/0125720 Al* 5/2011 Jayaraman 707/692
2012/0084518 Al* 42012 Vijayan et al. .. 711/162
2013/0218847 Al* 82013 Saika . .. 707/692
2014/0095439 Al* 42014 Ram 707/640
2014/0149476 Al* 5/2014 Kishimoto et al. . .. 707/827
2014/0188805 Al* 7/2014 Vijayan 707/646

* cited by examiner

Primary Examiner — Bai D. Vu
(74) Attorney, Agent, or Firm — Maschoff Brennan

(57) ABSTRACT

Optimizing backup of whitelisted files. In one example
embodiment, a method of optimizing backup of whitelisted
files may include a whitelist analysis phase that may include
identifying a set of allocated blocks in a source storage at a
point in time, identifying whitelisted files that are already
stored in a deduplication storage, and determining whether
one of the whitelisted files is stored in the source storage by
analyzing file attribute data stored in file system metadata in
the source storage. If so, the whitelist analysis phase may
include pruning the set of allocated blocks to exclude the
allocated blocks that correspond to content of the one
whitelisted file and associating logical locations of the con-
tent of the one whitelisted file as stored in the source storage
with logical locations of the content of the one whitelisted file
as stored in the deduplication storage.

11 Claims, 8 Drawing Sheets

Backup Phase 306 e 300
322 f326
Storing each unique nonduplicate
block in the pruned set of allocated
blocks in the deduplication storage
r324 r328

Are one or more of the
whitelisted files stored
in the source storage?

|
|
|
l 34|
|
|
|

For allocated blocks duplicated in the
deduplication storage, associating
physical locations of the allocated

blocks as stored in the source storage

with physical locations of the
corresponding duplicated blocks as
stored in the deduplication storage

| Associating physical locations of the
unique nonduplicate blocks as stored
| in the source storage with physical
locations of the corresponding
| nonduplicate blocks as stored in
| the deduplication storage

r318

Pruning the set of allocated blocks
to exclude the allocated blocks
that correspond to content of the
one or more whitelisted files

Associating logical locations of the

—®

content of the one or more whitelisted
files as stored in the source storage

with logical locations of the content of
the one or more whitelisted files as
stored in the deduplication storage

|
|
|
|
l 320 |
|
|
|
|
|

US 9,081,792 B1

Sheet 1 of 8

Jul. 14, 2015

2z} 8INPOI 1SIIBNUM

844 dnpojy uojedfidnpag

94} erepesiy

riL 9seqeleq

dnyoeg abew] [gjuswiaiou| Yu

dnyoeg sbeuw [ejuswiaiou] pug

dnyoeg a6ew] [ejuswalou| JS|

dnyoeg sbew| n4

g0, 9bei0)g uonesidnpag

wa)sAg uoneoandnpa(

} OI4

Zhh
abel0)g 10159y

00/ W9I)SAG 2109y

0Lk
abe.o)g 82in0g

v0/ WIISAS 82In0g

U.S. Patent

0}

J
QE\

US 9,081,792 B1

Sheet 2 of 8

Jul. 14, 2015

U.S. Patent

V¢ 'Oid
0L 296y | Moz | Wim 84
zig| aMg | Ix3 3814
90¢ gL ‘c'g| gl | SASVaI4
s$yo0/g 8IS 8|4
o
“ /
90z
v 3 g B v 3 E| B E| B v S
(91)804 (GL)80L (#1)80L (S1)804 (zi)BoL (L1)s0L (04)80L (6)80L (8)s0r (2)80i (9)80L (G)801 (v)80r (£)8or (2)804 (1)804
me\
gl ey | Lx1oaid
zG| ang | edgeid
¥0c vLe| aMzl | SASVveld
syoolg | sz1s 8|4
AN /
N\ /
8'7'6'¥'e'c't A
$300|g paIeno X v @ v v @ NS4 (b
300|g PaIRIO|lY
®oir (Dot oir ©oirr (For € @ors (Loss

¢0¢ .\

QZ\

US 9,081,792 B1

Sheet 3 of 8

Jul. 14, 2015

U.S. Patent

g¢ 9id
0L'2°9°G ¥y | aM0z | WIM 4814
zig| axg | ax3a 384
90¢ gLe5| axel | SASVeId
syo0|g 8zI9 3|4
™~
~ /
902
v 3 g 4 v 3 4 4 1 1 v STauA
(91)804 (GL)80L (pi)g0L (1)80L (z1)g0L (11)80L (04901 (6)80L (8)80L (2)s0L (9)801 (G)gor (v)gos (£)gor (2)80L (1)80)
me\
gl awr | LxLosnd
z'c| avg | edwgeld
0c p2e| aMzl | SAS'veld
syoolg | szis 3|4
AN /
N\ /
867l 3 v g v v g _\A_mm_ ()
$)00|g Pajedn||y paunid
®ots (Mosr @oir (©loLs (Kot (€oir @osr (Loss

80¢ \

o:\

US 9,081,792 B1

Sheet 4 of 8

Jul. 14, 2015

U.S. Patent

¢ 9l4

90¢

0L°29Gy
ch's
GLe6

aMoe
aMs
et

NIm 48114
aX3'384
SASvelld

$y00|g

o713

9|l4

N
N

/

v

J

g

3

g

3

Y

3

E

E

q

4

¥0Z
Vol wss

902

1SIIBNUM

(91)301 (G1)801 (¥1)801 (£1)g04 (21804 (L)80L (01)80L (6)S04

wS\

1

A

(8)804

(2)801

(9)804

(6)80

86l

$400]9 8jedldnpuop anbiun

SN\

c:.\

(v)804

404

(£)804

/

(¢)801

AN

(L)804

N
N

8
A
v'L'e

any
an8
anel

1X108I4
EdNgs8lld
SAS'vaId

sy00|g

a71S

9|ld

N\
N\

/

9

v

d

v

Y g

»0z
NS

(8)os 1

(1)1}

9)o1 1

(©)os 1

(b)04 1

(€)oi!

(2)o1}

(1)os

}

US 9,081,792 B1

Sheet 5 of 8

Jul. 14, 2015

U.S. Patent

ac oid
®zir (zir 9ziy (©zer (v iz @z (2
v v v (h
i | i
N:\
\/
\
gl vy | LxL0si4d
z's| axs | edwaend
v0C vre| aMzL | SASveld
spojg [sz18 8|4
\ /
R g
/
(91)904 (GL)80L (¥1)801 (£4)80L (24)80L (11)g04 (01)80L (6)804 (8)80L (2)80L (9)80: (6)904 (#)g0L (£)801\ (2)80L (1)80)
v0Z | 902
v 0 g 3 g 1 v 3 1 1 1 1 v NS herenim
-~ \
me\ -
0L‘2'9' 'y | axoz | wimdend
zi'g| axg | Ix33eN4d
90¢ gL'c'6| aMzl | SASVald
Y00 6213 o|l4

US 9,081,792 B1

Sheet 6 of 8

Jul. 14, 2015

U.S. Patent

(91)301 (G1)804 (r1)80L (£1)804 (Z1)804 (11)804 (01)80L (6)804

3¢ 9Il4

9z}

(1)1

9211

Gz

bzl

(€)z11

2zl

(L)z41

0

v

Y

v d

702
WS

A
m:\

/
/

(8)30}

(1)801

(9)301

(6)804

r0C

(7)301

\

8
A
v'L'e

iy | LX1'O9l
a8 | edin'gelld

el

SASveIlA

sY20|g

9zZIS 9|4

\
\

(£)804

(2)301

/

/
(1)804

v

0

g

E|

g

4

v E|

4

4

4

4

¥0Z
Vol wsa

902
ISII3HUM

moh\

e
e

/

N\

90¢

01296y
b8
GL'e'6

anoe

WIM 48l

aMg | IX3'3°i

ancl

SASVeIl

syo0|g

971 9|l

US 9,081,792 B1

Sheet 7 of 8

Jul. 14, 2015

U.S. Patent

_ Ve '9ld _
abelojs uoneoidnpap sy ul paIois
_ _ Se S9|l} POISI[S)IYM 2JoW JO SO Bl
10 JUSJUOY U} JO SUOITRIO| [B2160] YIM
_ _ abeI0)S 80IN0S BY) UI PAI0IS SE SA[l)
PeISI[8YIYM 8JOW JO BUO U} JO JUSIIOD
_ _ 3y} JO suonedo| [ea1Bo| Bunernossy
| | oze !
_ _ S|} PAISIIB)IYM 810U 10 BUO
U} JO JUSJUOD 0} PUOdsS81I00 Jey}
_ _ $Y00[q PBIRIO|[e Y} 8pN|OX8 0]
$Y00|q paIRd0|[e JO 18S 8y) Bulunid
_ 7 I
_ _ 8ie saA
_ _ ¢9beJo1s 821n0s By} Ul
_ o6e10)s UOEDIANPSP BU) U] PBIO)S N PIOIS S|4 PAISIIBHLM
abelo}s uoneolidnpap ay) se $300]q pajeandnp Buipuodsauiod S} 0 8low 1o suo 8ty
Ul PBIO)S SB $H00|q 8)ealdnpuou _ U} Jo Suoieao| [eaIsAyd yim _ 916 [}
Buipuodsaioa ay) Jo SUoneIo| 8beJI0)S 80IN0S BY} UI PBIOIS SE SYI0[
[eaisAyd yum abeioys 921n0s ayj Ul _ paIea0[e au} JO suonedq [eaisAyd _
paJols se $320/q ajealdnpuou anbiun Buieinosse ‘ebeiois uonedijdnpsp abelojs uoieoldnpap e
a3y} Jo suoijeao] |eaishyd Bunenossy _ B} Ul pajednp $400|q pejeooj e 104 _ %m__mmmmw__\%Nw_m%%&m%m_
_ A _J A — -
8ce _ vee s\ _ bie J 1
abeloys uoneaidnpap a3 Ul $420|q ¢8belojs uoneoidnpsp sy ul
pajeso||e 40 188 paunid sy} Ul %00|q 5 paealdnp $Y20|q peledo||e 10 188 _ awn uruiod e 1e ebei10is 824n0S B Ul
gjealidnpuou snbiun yoes buuo)sg _ N psunid au Ul $0[q Aue 8uy _ $400|q paleag||e Jo 185 e BulAnuap
@mmL 4% 14 EL
ooeS 90¢ 9seyd dnyoeg | »0¢ 9seyd sishleuy | 20¢ 9seyd sisAjeuy isij@iym

US 9,081,792 B1

Sheet 8 of 8

Jul. 14, 2015

U.S. Patent

8¢ 9old

awp urjuiod ayy 1e abeioys
80I1n08s 8y} Ul paiois Ajjeulbuo
Se $300|q 8U} JO SUONEIQ|
[eoisAyd pajeloosse sy yojew
1eys suoneoo) [eaisAyd ui abelo)s
8401884 8} Ul $490[q 8 Buuoig

ope- A

abeio)s uoieadnpsp ay) Wouy
$00|q PBYE30||. JO J8S paunid
8 U1 $Y00]q 8y} JO yoes Buipesy

mmmL

0.€ 9Seld 910)say

abel0}s 80.n0S U} JO SUONEDO|

[e218Ayd paulLLIBIBp 8y} ydjew
18y} aBeI0)s 2101581 B JO SUOREDO|

[eaisAyd ur sy00|q 8y Bunog

gge~ A

awn ur juiod syy je ebelois
80JN0S BU} Ul PaIos Se $YI0|q 8U3 Jo
suoieoo| |eo1bo| sy 03 Buipuodsasiod
suoneoo] eaisAyd ayy Buluuusiag

pec- A

abeioys uoneadnpap ayy Jo
suonedo| [eaisAyd pauiunsiap
a3 Wol} $Y0|q 8y Buipeay

26 A

abeioys uoneaidnpap ayj Ui palois
Se sa|l} pajsI|a)iym 8.0l JO 8UO
8Ly} JO Ju8jUCD 8Y} 0) pucdssalico
1y} $400|q 8y} JO suoneao|
[ea1bo| sy 03 Buipuocdsaliod
suoneoo] earsAyd ayy Buluiuusiag

omm,k
B0E SBUd 310}SAY ISIINUM

US 9,081,792 B1

1
OPTIMIZING BACKUP OF WHITELISTED
FILES

FIELD

The embodiments disclosed herein relate to optimizing
backup of whitelisted files.

BACKGROUND

A storage is computer-readable media capable of storing
data in blocks. Storages face a myriad of threats to the data
they store and to their smooth and continuous operation. In
order to mitigate these threats, a backup of the data in a
storage may be created at a particular point in time to enable
the restoration of the data at some future time. Such a resto-
ration may become desirable, for example, if the storage
experiences corruption of its stored data, if the storage
becomes unavailable, or if a user wishes to create a second
identical storage.

A storage is typically logically divided into a finite number
of fixed-length blocks. A storage also typically includes a file
system which tracks the locations of the blocks that are allo-
cated to each file that is stored in the storage. The file system
also tracks the blocks that are not allocated to any file. The file
system generally tracks allocated and unallocated blocks
using specialized data structures, referred to as file system
metadata. File system metadata is also stored in designated
blocks in the storage.

Various techniques exist for backing up a source storage.
One common technique involves backing up individual files
stored in the source storage on a per-file basis. This technique
is often referred to as file backup. File backup uses the file
system of the source storage as a starting point and performs
a backup by writing the files to a destination storage. Using
this approach, individual files are backed up if they have been
modified since the previous backup. File backup may be
useful for finding and restoring a few lost or corrupted files.
However, file backup may also include significant overhead
in the form of bandwidth and logical overhead because file
backup requires the tracking and storing of information about
where each file exists within the file system of the source
storage and the destination storage.

Another common technique for backing up a source stor-
age ignores the locations of individual files stored in the
source storage and instead simply backs up all allocated
blocks stored in the source storage. This technique is often
referred to as image backup because the backup generally
contains or represents an image, or copy, of the entire allo-
cated contents of the source storage. Using this approach,
individual allocated blocks are backed up if they have been
modified since the previous backup. Because image backup
backs up all allocated blocks of the source storage, image
backup backs up both the blocks that make up the files stored
in the source storage as well as the blocks that make up the file
system metadata. Also, because image backup backs up all
allocated blocks rather than individual files, this approach
does not necessarily need to be aware of the file system
metadata or the files stored in the source storage, beyond
utilizing minimal knowledge of the file system metadata in
order to only back up allocated blocks since unallocated
blocks are not generally backed up.

An image backup can be relatively fast compared to file
backup because reliance on the file system is minimized. An
image backup can also be relatively fast compared to a file
backup because seeking is reduced. In particular, during an
image backup, blocks are generally read sequentially with

10

15

20

25

30

35

40

45

50

55

60

65

2

relatively limited seeking. In contrast, during a file backup,
blocks that make up individual files may be scattered, result-
ing in relatively extensive seeking.

One common problem encountered when backing up mul-
tiple similar source storages to the same destination storage
using image backup is the potential for redundancy within the
backed-up data. For example, if multiple source storages
utilize the same commercial operating system, such as WIN-
DOWS® 8.1, they may store a common set of system files
which will have identical blocks. If these source storages are
backed up to the same destination storage, these identical
blocks will be stored in the destination storage multiple times,
resulting in redundant blocks. Redundancy in a destination
storage may increase the overall size requirements of desti-
nation storage and increase the bandwidth overhead of trans-
porting blocks to the destination storage.

The subject matter claimed herein is not limited to embodi-
ments that solve any disadvantages or that operate only in
environments such as those described above. Rather, this
background is only provided to illustrate one example tech-
nology area where some embodiments described herein may
be practiced.

SUMMARY

In general, example embodiments described herein relate
to optimizing backup of whitelisted files. The whitelisted files
may be stored in a source storage and the optimizing of the
backup of the whitelisted files may occur during an image
backup ofthe source storage. The example methods disclosed
herein may be employed to identify and avoid backing up
whitelisted files, such as common operating system files and
common application files, that are already stored in a desti-
nation storage, and instead associate logical locations of the
content of the whitelisted files as stored in the source storage
with logical locations of the content of the whitelisted files as
stored in the destination storage. In this manner, much of the
overhead associated with backing up the content of the
whitelisted files may be avoided.

In one example embodiment, a method of optimizing
backup of whitelisted files in a source storage during dedu-
plication of the source storage may include a whitelist analy-
sis phase that may include identifying a set of allocated blocks
in a source storage at a point in time, identifying whitelisted
files that are already stored in a deduplication storage, and
determining whether one or more of the whitelisted files are
stored in the source storage by analyzing file attribute data
stored in file system metadata in the source storage. If one or
more of the whitelisted files are stored in the source storage,
the whitelist analysis phase may include pruning the set of
allocated blocks to exclude the allocated blocks that corre-
spond to content of the one or more whitelisted files and
associating logical locations of the content of the one or more
whitelisted files as stored in the source storage with logical
locations of the content of the one or more whitelisted files as
stored in the deduplication storage.

In another example embodiment, a method of optimizing
backup of whitelisted files in a source storage during dedu-
plication of the source storage may include a whitelist analy-
sis phase, an analysis phase, and a backup phase. The
whitelist analysis phase may include identifying a set of allo-
cated blocks in a source storage at a point in time, identifying
whitelisted files that are already stored in a deduplication
storage, and determining whether one or more of the
whitelisted files are stored in the source storage by analyzing
file attribute data stored in file system metadata in the source
storage. If one or more of the whitelisted files is stored in the

US 9,081,792 B1

3

source storage, the whitelist analysis phase may include prun-
ing the set of allocated blocks to exclude the allocated blocks
that correspond to content of the one or more whitelisted files
and associating logical location of the content of the one or
more whitelisted files as stored in the source storage with
logical locations of the content of the one or more whitelisted
files as stored in the deduplication storage. The analysis phase
may be performed after completion of the whitelist analysis
phase and may include, for each block in the pruned set of
allocated blocks, determining if the allocated block is dupli-
cated in the deduplication storage. If the allocated block is
duplicated in the deduplication storage, the analysis phase
may include associating a physical location of the allocated
block as stored in the source storage with a physical location
of the corresponding duplicated block as stored in the dedu-
plication storage. The backup phase may be performed after
completion of the analysis phase and may include, for each
unique nonduplicate block in the pruned set of allocated
blocks, storing the unique nonduplicate block in the dedupli-
cation storage and associating a physical location of the
unique nonduplicate block as stored in the source storage
with a physical location of the corresponding block as stored
in the deduplication storage.

In yet another example embodiment, a method of optimiz-
ing backup of whitelisted files in a source storage during
backup of the source storage may include identifying a set of
allocated blocks in a source storage at a point in time, iden-
tifying whitelisted files that are already stored in a destination
storage, and determining whether one or more of the
whitelisted files are stored in the source storage by analyzing
file attribute data stored in file system metadata in the source
storage. [fone or more of the whitelisted files are stored in the
source storage, the method may include pruning the set of
allocated blocks to exclude the allocated blocks that corre-
spond to the content of the one or more whitelisted files,
associating logical locations of the content of the one or more
whitelisted files as stored in the source storage with logical
locations of the content of the one or more whitelisted files as
stored in the destination storage, storing the pruned set of
allocated blocks in a full backup in the destination storage,
restoring the pruned set of allocated blocks by reading the
pruned set of allocated blocks from the full backup and stor-
ing the pruned set of allocated blocks in a restore storage in
physical locations that match physical locations of the pruned
set of allocated blocks as originally stored in the source stor-
age at the point in time, and restoring the one or more
whitelisted files. Restoring the one or more whitelisted files
may include performing the following for the blocks that
correspond to the content of the one or more whitelisted files:
determining the physical locations corresponding to the logi-
cal locations of the blocks as stored in the destination storage,
reading the blocks from the determined physical locations of
the destination storage, determining the physical locations
corresponding to the logical locations of the blocks as stored
in the source storage at the point in time, and storing the
blocks in physical locations of the restore storage that match
the determined physical locations of the source storage.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention
as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will be described and explained
with additional specificity and detail through the use of the
accompanying drawings in which:

20

25

30

40

45

4

FIG. 1is aschematic block diagram illustrating an example
deduplication image backup system;

FIGS. 2A-2E are schematic diagrams illustrating backup
and restore of whitelisted files in a source storage during
backup and restore of the source storage; and

FIGS. 3A and 3B are a schematic flowchart illustrating an
example method for optimizing backup and restore of
whitelisted files.

DESCRIPTION OF EMBODIMENTS

The term “storage” as used herein refers to computer-
readable media, or some logical portion thereof such as a
volume, capable of storing data in blocks. The term “block”
as used herein refers to a fixed-length discrete sequence of
bits. In some example embodiments, the size of each block
may be configured to match the standard sector size of a file
system of a storage on which the block is stored. For example,
the size of each block may be 512 bytes (4096 bits) where 512
bytes is the size of a standard sector. In other example
embodiments, the size of each block may be configured to be
a multiple of the standard sector size of a file system of a
storage on which the block is stored. For example, the size of
each block may be 4096 bytes (32,768 bits) where 512 bytes
is the size of a standard sector, which results in each block
including eight sectors. The term “allocated block™ as used
herein refers to a block in a storage that is currently tracked as
storing data by a file system of the storage. The term “free
block™ as used herein refers to a block in a storage that is not
currently tracked as storing data by a file system of the stor-
age. The term “backup” when used herein as a noun refers to
a copy or copies of one or more blocks from a storage. The
term “full backup” as used herein refers to a full backup of a
storage that includes at least a copy of each unique allocated
block of the storage at a point in time such that the full backup
can be restored on its own to recreate the state of the storage
at the point in time, without being dependent on any other
backup. A “base backup” may also include nonunique allo-
cated blocks and free blocks of the storage at the point intime.
The term “incremental backup” as used herein refers to an at
least partial backup of a storage thatincludes at least a copy of
each unique allocated block of the storage that was modified
between a previous point in time of a previous backup of the
storage and the subsequent point in time of the incremental
backup, such that the incremental backup, along with all
previous backups of the storage, including an initial full
backup of the storage, can be restored together to recreate the
exact state of the storage at the subsequent point in time. An
“incremental backup” may also include nonunique allocated
blocks and free blocks of the storage that were modified
between the previous point in time and the subsequent point
in time. The term “modified block™ as used herein refers to a
block that was modified either because the block was previ-
ously allocated and changed or because the block was modi-
fied by being newly allocated. The term “decremental
backup” as used herein refers to an at least partial backup of
a storage that includes at least a copy of each unique allocated
block from a full backup of the storage that corresponds to a
block that was modified in the source storage between a
previous point in time and a subsequent point in time, such
that the decremental backup, along with all subsequent dec-
remental backups of the storage, including a full backup of
the storage, can be restored together to recreate the state of the
storage at the previous point in time. A “decremental backup”
may also include nonunique allocated blocks and free blocks
from a full backup of the storage that correspond to blocks
that were modified in the source storage between the point in

US 9,081,792 B1

5

time and the subsequent point in time. It is understood that a
“full backup,” an “incremental backup,” and/or a “decremen-
tal backup” may exclude certain undesired allocated blocks
such as blocks of data belonging to files whose contents are
not necessary for restoration purposes, such as virtual
memory pagination files and machine hibernation state files,
and/or blocks of data belonging to files which are determined
to be whitelist files.

FIG.11s aschematic block diagram illustrating an example
deduplication image backup system 100. As disclosed in FIG.
1, the system 100 includes a deduplication system 102, a
source system 104, and a restore system 106. The systems
102,104, and 106 include storages 108,110, and 112, respec-
tively. The deduplication storage 108 stores a full backup and
multiple incremental backups that have been created of the
source storage 110 at various points in time. For example, the
full backup was created at time t(1), the 1st incremental
backup was created at time t(2), the 2nd incremental backup
was created at time t(3), and the nth incremental backup was
created at time t(n+1). The deduplication system 102 also
includes a database 114, metadata 116, a deduplication mod-
ule 118, and a whitelist module 122. The systems 102, 104,
and 106 are able to communicate with one another over a
network 120.

Each of the systems 102, 104, and 106 may be any com-
puting device capable of supporting a storage and communi-
cating with other systems including, for example, file servers,
web servers, personal computers, desktop computers, laptop
computers, handheld devices, multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, smartphones, digital cameras, hard disk drives, flash
memory drives, and virtual machines. The network 120 may
be any wired or wireless communication network including,
for example, a Local Area Network (LAN), a Metropolitan
Area Network (MAN), a Wide Area Network (WAN), a Wire-
less Application Protocol (WAP) network, a Bluetooth net-
work, an Internet Protocol (IP) network such as the internet,
or some combination thereof.

The image backups stored in the deduplication storage 108
may be created by the deduplication module 118. For
example, the deduplication module 118 may be configured to
execute computer instructions to perform image backup
operations of creating a full backup and multiple incremental
backups of the source storage 110. It is noted that these image
backups may initially be created on the source system 104 and
then copied to the deduplication system 102.

For example, the full backup may be created to capture the
state at time t(1). This image backup operation may include
the deduplication module 118 copying all unique allocated
blocks of the source storage 110 as allocated at time t(1) and
storing the unique allocated blocks in the deduplication stor-
age 108, or veritying that the unique allocated blocks of the
source storage 110 as allocated at time t(1) are already stored
in the deduplication storage 108. The state of the source
storage 110 at time t(1) may be captured using snapshot
technology in order to capture the blocks stored in the source
storage 110 at time t(1) without interrupting other processes,
thus avoiding downtime of the source storage 110. The full
backup may be relatively large depending on the size of the
source storage 110 and the number of allocated blocks at time
t(1). As a result, the full backup may take a relatively long
time to create and consume a relatively large amount of space
in the deduplication storage 108.

Next, the 1st and 2nd incremental backups may be created
to capture the states at times t(2) and t(3), respectively. This
may include copying only modified unique allocated blocks
of the source storage 110 present at time t(2) and storing the

10

15

20

25

30

35

40

45

55

60

65

6

modified unique allocated blocks in the deduplication storage
108, or verifying that the modified unique allocated blocks of
the source storage 110 present at time t(2) are already stored
in the deduplication storage 108, then later copying only
modified unique allocated blocks of the source storage 110
present at time t(3) and storing the modified unique allocated
blocks in the deduplication storage 108, or verifying that the
modified unique allocated blocks of the source storage 110
present at time t(3) are already stored in the deduplication
storage 108. The states of the source storage 110 at times t(2)
and t(3) may again be captured using snapshot technology,
thus avoiding downtime of the source storage 110. Each
incremental backup may include only those unique allocated
blocks from the source storage 110 that were modified after
the time of the previous backup. Thus, the 1st incremental
backup may include only those unique allocated blocks from
the source storage 110 that were modified between time t(1)
and time t(2), and the 2nd incremental backup may include
only those unique allocated blocks from the source storage
110 that were modified between time t(2) and time t(3). In
general, as compared to the full backup, each incremental
backup may take a relatively short time to create and consume
a relatively small storage space in the deduplication storage
108.

Finally, an nth incremental backup may be created to cap-
ture the state at time t(n+1). This may include copying only
modified unique allocated blocks of the source storage 110
present at time t(n+1), using snapshot technology, and storing
the modified unique allocated blocks in the deduplication
storage 108, or verifying that the modified unique allocated
blocks of the source storage 110 present at time t(n+1) are
already stored in the deduplication storage 108. The nth incre-
mental backup may include only those unique allocated
blocks from the source storage 110 that were modified
between time t(n) and time t(n+1).

Therefore, incremental backups may be created on an
ongoing basis. The frequency of creating new incremental
backups may be altered as desired in order to adjust the
amount of data that will be lost should the source storage 110
experience corruption of its stored blocks or become unavail-
able at any given point in time. The blocks from the source
storage 110 can be restored to the state at the point in time of
a particular incremental backup by applying the image back-
ups to the restore storage 112 from oldest to newest, namely,
first applying the full backup and then applying each succes-
sive incremental backup up to the particular incremental
backup. Alternatively, the blocks from the source storage 110
can be restored to the state at the point in time of a particular
incremental backup by applying the image backups to the
restore storage 112 concurrently, namely, concurrently apply-
ing the full backup and each successive incremental backup
up to the particular incremental backup.

Although only allocated blocks are included in the
example incremental backups discussed above, it is under-
stood that in alternative implementations both allocated and
free blocks may be backed up during the creation of a full
backup or an incremental backup. This is typically done for
forensic purposes, because the contents of free blocks can be
interesting where the free blocks contain data from a previous
point in time when the blocks were in use and allocated.
Therefore, the creation of full backups and incremental back-
ups as disclosed herein is not limited to allocated blocks but
may also include free blocks.

Further, although only full backups and incremental back-
ups are discussed above, it is understood that the source
storage 110 may instead be backed up by creating a full
backup and one or more decremental backups. Decremental

US 9,081,792 B1

7

backups are created by initially creating a full backup to
capture the state at an initial point in time, then updating the
full backup to capture the state at a subsequent point in time
by modifying only those blocks in the full backup that were
modified between the initial and subsequent points in time.
Prior to the updating of the full backup, however, any original
blocks in the full backup that correspond to the modified
blocks are copied to a decremental backup, thus enabling
restoration ofthe source storage 110 at the initial point in time
(by restoring the updated full backup and then restoring the
decremental backup) or at the subsequent point in time (by
simply restoring the updated full backup). Since restoring a
single full backup is generally faster than restoring a full
backup and one or more incremental or decremental backups,
creating decremental backups instead of incremental backups
may enable the most recent backup to be restored more
quickly since the most recent backup is always a full backup
instead of potentially being an incremental backup. There-
fore, the methods disclosed herein are not limited to imple-
mentation on full and incremental backups, but may also
include implementation on full and decremental backups.

The database 114 and the metadata 116 may be employed
to track information related to the source storage 110, the
deduplication storage 108, and the backups of the source
storage 110 that are stored in the deduplication storage 108.
For example, the database 114 and the metadata 116 may be
identical in structure and function to the database 500 and the
metadata 700 disclosed in related U.S. patent application Ser.
No. 13/782,549, titled “MULTIPHASE DEDUPLICA-
TION,” which was filed on Mar. 1, 2013 and which is
expressly incorporated herein by reference in its entirety.

In one example embodiment, the deduplication system 102
may be a network server, the source system 104 may be a first
desktop computer, the restore system 106 may be a second
desktop computer, and the network 120 may include the
internet. In this example embodiment, the network server
may be configured to periodically back up the storage of the
first desktop computer over the internet as part of a backup job
by creating the full backup and the multiple incremental
backups stored in the deduplication storage 108. The first
desktop computer may also be configured to track incremen-
tal changes to its storage between backups in order to easily
and quickly identify only those blocks that were modified
during the creation of an incremental backup. The network
server may also be configured to restore one or more of the
image backups to the storage of the second desktop computer
over the internet if the first desktop computer experiences
corruption of its storage or if the first desktop computer’s
storage becomes unavailable.

Although only a single storage is disclosed in each of the
systems 102, 104, and 106 in FIG. 1, it is understood that any
of'the systems 102, 104, and 106 may instead include two or
more storages. Further, although the systems 102, 104, and
106 are disclosed in FIG. 1 as communicating over the net-
work 120, it is understood that the systems 102, 104, and 106
may instead communicate directly with each other. For
example, in some embodiments any combination of the sys-
tems 102, 104, and 106 may be combined into a single sys-
tem. Also, although the storages 108, 110, and 112 are dis-
closed as separate storages, it is understood that any
combination of the storages 108, 110, and 112 may be com-
bined into a single storage. For example, in some embodi-
ments the source storage 110 may function as both a source
storage during the creation of a backup and a restore storage
during a restore of the backup, which may enable the source
storage 110 to be restored to a state of an earlier point in time.
Further, although the deduplication module 118 and the

10

15

20

25

30

35

40

45

50

55

60

65

8

whitelist module 122 are the only modules disclosed in the
example system 100 of FIG. 1, it is understood that the func-
tionality of the modules 118 and 122 may be replaced or
augmented by one or more similar modules residing on any of
the systems 102, 104, or 106 or another system. Finally,
although only a single source storage and a single restore
storage are disclosed in the example system 100 of FIG. 1, it
is understood that the deduplication system 102 of FIG. 1 may
be configured to simultaneously back up multiple source
storages and/or to simultaneously restore to multiple restore
storages. For example, the greater the number of storages that
are backed up to the deduplication storage 108 of the dedu-
plication system 102, the greater the likelihood for reducing
redundancy and for reducing the overall number of blocks
being backed up, resulting in corresponding decreases in the
overall size requirements of the deduplication storage 108
and in the bandwidth overhead of transporting blocks to the
deduplication storage 108.

Having described one specific environment with respect to
FIG. 1, it is understood that the specific environment of FIG.
1 is only one of countless environments in which the example
methods disclosed herein may be practiced. The scope of the
example embodiments is not intended to be limited to any
particular environment.

FIGS. 2A-2E are schematic diagrams illustrating backup
and restore of whitelisted files in the source storage 110
during backup and restore of the source storage 110.
Although the source storage 110 and the restore storage 112
are depicted with eight blocks, and the deduplication storage
108 is depicted with sixteen blocks, in FIGS. 2A-2E, it is
understood that the source storage 110, the restore storage
112, and the duplication storage 108 may include millions or
billions of blocks, or potentially even more blocks. Also,
although the whitelisted files in the whitelist 206 are depicted
with only two, three, or five blocks in FIGS. 2A-2F, it is
understood that whitelisted files may be much larger, such as
files including blocks representing several gigabytes (GB) of
data.

As disclosed in FIG. 2A, prior to the backup and restore of
the source storage 110, the deduplication storage 108 may
have been seeded with blocks included in one or more
whitelisted files of an operating system, such as WIN-
DOWS® 8.1, and/or with blocks included in one or more
whitelisted files of a software application, such as
MICROSOFT® Word 2013. For example, as disclosed in
FIG. 2A, the whitelist 206 indicates that blocks included in a
whitelisted file of an operating system named “FileA.SYS”
and in a whitelisted file of a software application named
“FileE.EXE” were seeded into the deduplication storage 108.

In addition, the whitelist 206 indicates that blocks included
in a file-based disk image file having a Windows Image Boot
(WIMBoot) format named “FileF. WIM” was seeded into the
deduplication storage 108. The example methods disclosed
herein may be particularly useful when employed in connec-
tion with relatively large WIMBoot files. For example, in
some WINDOWS® 8.1 deployments, the bulk of the operat-
ing system files may be found in a WIMBoot file named
“INSTALL.WIM” in a fixed-state read-only. This WIMBoot
file is about 3.5 GB in size. In additional, other files may also
be stored in a second optional WIMBoot file named “CUS-
TOM.WIM” which may also be relatively large. Where either
of these relatively large WIMBoot files is a whitelisted file,
the example methods disclosed herein may be employed to
backup this WIMBoot file in an optimized manner that avoids
much of'the overhead that would normally be associated with
backing up the content of this WIMBoot file.

US 9,081,792 B1

9

As disclosed in FIG. 3A, the source storage 110 may
include one or more blocks that include file system metadata
(FSM) 204. The FSM 204 may include attribute data includ-
ing, but not limited to, file name, file size, file creation date,
file modification date, and block positions of the blocks that
make up the content of each file stored in the source storage
110. The whitelist 206 may include similar, or additional, file
attribute data for the whitelisted files stored in the deduplica-
tion storage 108, such as a subset of file content and/or a hash
or hashes of a subset of file content. In addition, the backup of
the source storage 110 may include identifying a set 202 of
allocated blocks in the source storage at the point in time of
the backup, which is time t(1). As disclosed in FIG. 2B, a
pruned set 208 of allocated blocks may exclude the allocated
blocks that correspond to content of the whitelisted files
stored in the whitelist 206. As disclosed in FIG. 2C, blocks
from the source storage 110 that are not already stored in the
deduplication storage 108 may be copied to the deduplication
storage 108 during the backup of the source storage 110,
including the block or blocks that include the FSM 204 of the
source storage 110. Finally, as disclosed in FIGS. 2D and 2E,
the backup of the source storage 110 that was stored in the
deduplication storage 108 may later be restored to the restore
storage 112. Additional discussion of FIGS. 2A-2E is
included below in connection with the discussion of FIGS.
3A and 3B.

FIGS. 3A and 3B are a schematic flowchart illustrating an
example method 300 for optimizing backup and restore of
whitelisted files in the source storage 110 during backup and
restore of the source storage 110. The method 300 may be
implemented, in at least some embodiments, by the whitelist
module 122 and the deduplication module 118 of FIG. 1. For
example, these modules may be configured to execute com-
puter instructions to perform operations of optimizing backup
and restore of whitelisted files, as represented by one or more
of'phases 302-310 which are made up of the steps 312-340 of
the method 300. Although illustrated as discrete phases and
steps, various phases/steps may be divided into additional
phases/steps, combined into fewer phases/steps, reordered, or
eliminated, depending on the desired implementation. Also,
prior to the method 300, various whitelisted files may have
been backed up into, or seeded into, the deduplication storage
108. The method 300 will now be discussed with reference to
FIGS. 1, 2A-2E, and 3A-3B.

The method 300 may include a whitelist analysis phase
302, an analysis phase 304, a backup phase 306, a whitelist
restore phase 308, and a restore phase 310.

The whitelist analysis phase 302 of the method 300 may
include a step 312 of identifying a set of allocated blocks in a
source storage at a point in time. For example, the whitelist
module 122 of FIG. 1 may identify, at step 312, that the blocks
110(1)-110(5), 110(7), and 110(8) in the source storage 110
at time t(1) are allocated, as disclosed in FIG. 2A. The
whitelist module 122 may store this set of allocated blocks as
alist “1,2,3,4,5,7, 8 orin any other format such as “1-5,
7-8” in the set 202 of allocated blocks of FIG. 2A.

The whitelist analysis phase 302 of the method 300 may
include a step 314 of identifying whitelisted files that are
already stored in a deduplication storage. Continuing with the
above example, the whitelist module 122 of FIG. 1 may
identify, at step 314, the files named “FileA.SYS,” “FileE-
.EXE,” and “FileF.WIM” that are listed in the whitelist 206 as
whitelisted files that are already stored in the deduplication
storage 108.

The whilelisted files that are listed in the whitelist 206 may
have been previously seeded into the deduplication storage
108, or may have been previously backed up into the dedu-

10

15

20

25

30

35

40

45

50

55

60

65

10

plication storage 108 from a source storage such as the source
storage 110. In either case, the whitelisted files may be iden-
tified and added to the whitelist 206 by analyzing files that are
candidates for seeding, or that are stored in the deduplication
storage 108, to identify common files having an attribute of
particular interest, such as a certain file extension (e.g.,
“WIM”) or a certain size that is above a predetermined
threshold size (e.g., >1 GB). These attributes may be stored in
file system metadata and/or may be stored in blocks of the
files themselves, for example. For example, where a file is
larger than a predetermined threshold size and is included in
the backups of multiple source storages, the whitelist module
122 may identity the file as a whitelisted file and add the file
to the whitelist 206. This procedure may include gaining file
level access to files from multiple storages that have been
backed up into the deduplication storage 108 and comparing
file attribute data stored in file system metadata of each of the
multiple backed-up storages to identify common files having
a size that is above a predetermined threshold size. This
comparing may include comparing hashes, stored in the
deduplication storage 108, of blocks of the common files to
verify that the common files are identical. Additionally or
alternatively, this comparing may include comparing addi-
tional file attribute data stored in blocks of files in the multiple
backed-up storages to identify common files.

The whitelist analysis phase 302 of the method 300 may
include a decision step 316 of determining if one or more of
the whitelisted files are stored in the source storage. Continu-
ing with the above example, the whitelist module 122 of FIG.
1 may determine, at step 316, if one or more of the whitelisted
files that are listed in the whitelist 206 of FIG. 2A are stored
in the source storage 110. If not (No at step 316), the method
300 may proceed to step 322 of the analysis phase 304.
Conversely, if so (Yes at step 316), the method 300 may
proceed to step 318 of the whitelist analysis phase 302. Con-
tinuing with the above example, the whitelist module 122 of
FIG. 1 may determine, at step 316, that the whitelisted file
named “FileA.SYS” that is listed in the whitelist 206 of FIG.
2A is stored in the source storage 110, as indicated in the FSM
204.

The whitelist analysis phase 302 of the method 300 may
include the step 318 of pruning the set of allocated blocks to
exclude the allocated blocks that correspond to content of the
one or more whitelisted files. Continuing with the above
example, the whitelist module 122 of FIG. 1 may prune, at
step 318, the set 202 of allocated blocks of FIG. 2 A to exclude
the allocated blocks 110(3), 110(4), and 110(7) that corre-
spond to content of the whitelisted file named “FileA.SYS,”
resulting in the pruned set 208 of allocated blocks of FIG. 2B.

The whitelist analysis phase 302 of the method 300 may
include the step 320 of associating logical locations of the
content of the one or more whitelisted files as stored in the
source storage with logical locations of the content of the one
or more whitelisted files as stored in the deduplication stor-
age. Continuing with the above example, the whitelist module
122 of FIG. 1 may associate, at step 320, the logical locations
of the content of the whitelisted file named “FileA.SYS” as
stored in the source storage 110 with logical locations of the
content of the whitelisted file named “FileA.SYS” as stored in
the deduplication storage 108. This logical association is
represented by the line between “FileA.SYS” in the FSM 204
and “FileA.SYS” in the whitelist 206 in FIG. 2B.

Continuing with the above example, by the conclusion of
the whitelist analysis phase 302 of the method 300, the blocks
110(3), 110(4), and 110(7), that correspond to content of the
whitelisted file named “FileA.SYS,” may have been identi-
fied and pruned from the set 202 of allocated blocks. Since the

US 9,081,792 B1

11

whitelisted file named “FileA.SYS” is already stored in the
deduplication storage 108, the identification of these blocks
allows the method 300 to associate logical locations of these
blocks as stored in the source storage 110 with logical loca-
tions of these blocks as stored in the deduplication storage
108 without the overhead normally associated with backing
up these blocks. In particular, this identification, pruning, and
association may avoid overhead associated with analyzing
these blocks during the analysis phase 304 or transporting and
storing these blocks during the backup phase 306. Where the
whitelisted file is relatively large, this savings in overhead can
be substantial.

The analysis phase 304 of the method 300 may include a
decision step 322 of determining if any blocks in the pruned
set of allocated blocks are duplicated in the deduplication
storage. Continuing with the above example, the deduplica-
tion module 118 of FIG. 1 may determine, at step 322, if any
blocks in the pruned set 208 of allocated blocks in FIG. 2B are
duplicated in the deduplication storage 108. If not (No at step
322), the method 300 may proceed to step 326 of the backup
phase 306. Conversely, if so (Yes at step 322), the method 300
may proceed to step 324 of the analysis phase 304. Continu-
ing with the above example, the deduplication module 118 of
FIG. 1 may determine, at step 322, that the block 110(2) in the
pruned set 208 of allocated blocks in FIG. 2B is already
duplicated in block 108(11) in the deduplication storage 108.
This determination may be made, for example, by comparing
hashes of the blocks in the pruned set 208 of allocated blocks
in FIG. 2B to hashes of the blocks stored in the duplication
storage 110.

The analysis phase 304 of the method 300 may include a
step 324 of, for allocated blocks duplicated in the deduplica-
tion storage, associating physical locations of the allocated
blocks as stored in the source storage with physical locations
of'the corresponding duplicated blocks as stored in the dedu-
plication storage. Continuing with the above example, the
deduplication module 118 of FIG. 1 may associate, at step
324, a physical location of offset (2) of the allocated block
110(2) as stored in the source storage 110 with a physical
location of offset (11) of the corresponding duplicated block
108(11) as stored in the deduplication storage 108. This asso-
ciation, which is represented by the line between block 110(2)
and 108(11) in FIG. 2B, may include, for example, creating a
metadata node in a metadata record in the metadata 116.

The backup phase 306 of the method 300 may include the
step 326 of storing each unique nonduplicate block in the
pruned set of allocated blocks in the deduplication storage.
Continuing with the above example, the deduplication mod-
ule 118 of FIG. 1 may store, at step 326, each unique nondu-
plicate block in the set 210 of unique nonduplicate blocks of
FIG. 2C in the deduplication storage 108. It is noted that the
set 210 of unique nonduplicate blocks of FIG. 2C is the same
as the pruned set 208 of allocated blocks of FIG. 2B except
that the block at offset (2) that was identified and associated in
steps 322 and 324 has been eliminated. This storing, which is
represented by the dashed lines and arrows in FIG. 2C,
includes storing block 110(1) inblock 108(2), block 110(5) in
block 108(13), and block 110(8) in block 108(14).

The backup phase 306 of the method 300 may include the
step 328 of associating physical locations of the unique non-
duplicate blocks as stored in the source storage with physical
locations of the corresponding nonduplicate blocks as stored
in the deduplication storage. Continuing with the above
example, the deduplication module 118 of FIG. 1 may asso-
ciate, at step 328, physical locations of offsets (1), (5), and (8)
of the unique allocated blocks 110(1), 110(5), and 110(8),
respectively, as stored in the source storage 110 with physical

30

40

45

12

locations of offsets (2), (13), and (14) of the corresponding
nonduplicate blocks 108(2), 108(13), and 108(14), respec-
tively, as stored in the deduplication storage 108. This asso-
ciation, which is represented by the dashed lines and arrows in
FIG. 2C, may include, for example, creating metadata nodes
in a metadata record in the metadata 116.

Continuing with the above example, by the conclusion of
the analysis phase 304 and backup phase 306 of the method
300, a full backup of the source storage 110, such as the full
backup disclosed in FIG. 1, will be stored in the deduplication
storage 108. Due to the whitelist phase 302, however, this full
backup is accomplished for whitelisted files, such as the
whitelisted file named “FileA.SYS,” without the usual over-
head associated with analyzing and backing up the content of
the whitelisted files.

At some point after the creation of the full backup of the
source storage 110, a user may decide to restore the full
backup to the restore storage 112 or to another storage. This
restore of the full backup can be accomplished using the
whitelist restore phase 308 and the restore phase 310.

The whitelist restore phase 308 of the method 300 may
include a step 330 of determining the physical locations cor-
responding to the logical locations of the blocks that corre-
spond to the content of the one or more whitelisted files as
stored in the deduplication storage. Continuing with the
above example, the deduplication module 118 of FIG. 1 may
determine, at step 330, the physical locations corresponding
to the logical locations of the blocks that correspond to the
content of the whitelisted file named “FileA.SYS” as stored in
the deduplication storage 108, since the whitelisted file
named “FileA.SYS” was previously associated with the full
backup of the source storage 110, as represented by the line
between “FileA.SYS” in the FSM 204 and “FileA.SYS” in
the whitelist 206 in FIG. 2D. As disclosed in FIG. 2D, the
deduplication module 118 may determine these physical
locations by accessing the whitelist 206 to determine that
these physical locations are offsets (9), (3), and (15) in the
deduplication storage 108.

The whitelist restore phase 308 of the method 300 may
include a step 332 of reading the blocks from the determined
physical locations of the deduplication storage. Continuing
with the above example, the deduplication module 118 of
FIG. 1 may read, at step 332, the blocks 108(9), 108(3), and
108(15) from the determined physical locations of offsets (9),
(3), and (15) of the deduplication storage 108, as disclosed in
FIG. 2D.

The whitelist restore phase 308 of the method 300 may
include a step 334 of determining the physical locations cor-
responding to the logical locations of the blocks as stored in
the source storage at the point in time. Continuing with the
above example, the deduplication module 118 of FIG. 1 may
determine, at step 334, the physical locations corresponding
to the logical locations of the blocks that correspond to the
content of the whitelisted file named “FileA.SYS” as stored in
the source storage 110 at time t(1). As disclosed in FIG. 2D,
the deduplication module 118 may determine these physical
locations by accessing the FSM 204 of the full backup, which
is located in block 108(2), to determine that these physical
locations were offsets (3), (7), and (4) in the source storage
110 at time t(1).

The whitelist restore phase 308 of the method 300 may
include a step 336 of storing the blocks in physical locations
of a restore storage that match the determined physical loca-
tions of the source storage. Continuing with the above
example, the deduplication module 118 of FIG. 1 may store,
at step 336, the blocks 108(9), 108(3), and 108(15) in physical
locations of offsets (3), (7), and (4) of the restore storage 112

US 9,081,792 B1

13
that matched the physical locations of offsets (3), (7), and (4)
of'the source storage 110 that were determined at step 334, as
disclosed in FIG. 2D. This storing is represented as arrows in
FIG. 2D.

The restore phase 310 of the method 300 may include a step
338 ofreading each of the blocks in the pruned set of allocated
blocks from the deduplication storage. Continuing with the
above example, the deduplication module 118 of FIG. 1 may
read, at step 338, each of the blocks 108(2),108(11),108(13),
and 108(14) from the deduplication storage 108, as disclosed
in FIG. 2E, that correspond to the pruned set 208 of allocated
blocks, as disclosed in FIG. 2B. The locations of these blocks
in the deduplication storage may be determined, for example,
by accessing the metadata 116 of FIG. 1.

The restore phase 310 of the method 300 may include a step
340 of storing the blocks in the restore storage in physical
locations that match the associated physical locations of the
blocks as originally stored in the source storage at the point in
time. Continuing with the above example, the deduplication
module 118 of FIG. 1 may store, at step 340, the blocks
108(2), 108(11), 108(13), and 108(14) in the restore storage
112 in physical locations of offsets (1), (2), (5) and (8) that
match the associated physical locations of offsets (1), (2), (5)
and (8) of'the blocks as originally stored in the source storage
110 at time t(1), as disclosed in FIG. 2E. This storing is
represented as arrows in FIG. 2E.

It is understood that the foregoing discussion of the method
300 is but one possible implementation of a method of opti-
mizing backup and restore of whitelisted files, and various
modifications are possible and contemplated. For example,
the method 300 may be modified to remove one or more of the
steps in the phases 304-310. In addition, although the method
300 is directed toward optimizing backup of whitelisted files
into a deduplication storage, it is understood that the method
300 could be modified to instead optimize backup of
whitelisted files into a destination storage that is not config-
ured for deduplication of blocks. In this modification of the
method 300, the steps of the analysis phase 304 may be
eliminated, the steps of the backup phase 306 may be per-
formed on all allocated blocks instead of only unique nondu-
plicate allocated blocks, and the step 328 may be eliminated
or may be inherent in the format of the image backup.

The embodiments described herein may include the use of
a special-purpose or general-purpose computer, including
various computer hardware or software modules, as dis-
cussed in greater detail below.

Embodiments described herein may be implemented using
non-transitory computer-readable media for carrying or hav-
ing computer-executable instructions or data structures
stored thereon. Such computer-readable media may be any
available media that may be accessed by a general-purpose or
special-purpose computer. By way of example, and not limi-
tation, such computer-readable media may include non-tran-
sitory computer-readable storage media including RAM,
ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other storage medium which may be used to carry or store
one or more desired programs having program code in the
form of computer-executable instructions or data structures
and which may be accessed and executed by a general-pur-
pose computer, special-purpose computer, or virtual com-
puter such as a virtual machine. Combinations of the above
may also be included within the scope of computer-readable
media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed by one or more
processors, cause a general-purpose computer, special-pur-

10

15

20

25

30

35

40

45

50

55

60

65

14

pose computer, or virtual computer such as a virtual machine
to perform a certain method, function, or group of methods or
functions. Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal steps, itis to be understood that the subject matter defined
in the appended claims is not necessarily limited to the spe-
cific features or steps described above. Rather, the specific
features and steps described above are disclosed as example
forms of implementing the claims.

As used herein, the term “module” may refer to software
objects or routines that execute on a computing system. The
different modules or filters described herein may be imple-
mented as objects or processes that execute on a computing
system (e.g., as separate threads). While the system and meth-
ods described herein are preferably implemented in software,
implementations in hardware or a combination of software
and hardware are also possible and contemplated.

All examples and conditional language recited herein are
intended for pedagogical objects to aid the reader in under-
standing the example embodiments and the concepts contrib-
uted by the inventor to furthering the art, and are to be con-
strued as being without limitation to such specifically-recited
examples and conditions.

The invention claimed is:

1. A method of optimizing backup of whitelisted files in a
source storage during deduplication of the source storage, the
method being executed by one or more processors, the
method comprising:

a whitelist analysis phase that includes:

identifying a set of allocated blocks in the source storage
at a point in time;

identifying whitelisted files that are already stored in a
deduplication storage;

determining whether one or more of the whitelisted files
are stored in the source storage by analyzing file
attribute data stored in file system metadata in the
source storage;

responsive to one or more of the whitelisted files being
stored in the source storage, pruning the set of allo-
cated blocks to exclude the allocated blocks that cor-
respond to content of the one or more whitelisted files;
and

associating logical locations of the content of the one or
more whitelisted files as stored in the source storage
with logical locations of the content of the one or more
whitelisted files as stored in the deduplication storage;

an analysis phase that is performed after completion of the

whitelist analysis phase and that includes, for each block

in the pruned set of allocated blocks:

determining if the allocated block is duplicated in the
deduplication storage; and

responsive to the allocated block being duplicated in the
deduplication storage, associating a physical location
of the allocated block as stored in the source storage
with a physical location of the corresponding dupli-
cated block as stored in the deduplication storage;
a backup phase that is performed after completion of the
analysis phase and that includes, for each unique non-
duplicate block in the pruned set of allocated blocks:
storing the unique nonduplicate block in the deduplica-
tion storage; and

associating a physical location of the unique nondupli-
cate block as stored in the source storage with a physi-
cal location of the corresponding block as stored in
the deduplication storage; and

US 9,081,792 B1

15

awhitelist restore phase that is performed after completion
of'the backup phase and that includes the following steps
for the blocks that correspond to the content of the one or
more whitelisted files:
determining the physical locations corresponding to the
logical locations of the blocks as stored in the dedu-
plication storage;
reading the blocks from the determined physical loca-
tions of the deduplication storage;
determining the physical locations corresponding to the
logical locations of the blocks as stored in the source
storage at the point in time; and
storing the blocks in physical locations of a restore stor-
age that match the determined physical locations of
the source storage.
2. The method as recited in claim 1, wherein the whitelisted
files includes files that have been seeded into the deduplica-
tion storage, the seeded whitelisted files each having a size
that is above a predetermined threshold size.
3. The method as recited in claim 1, wherein the identifying
the whitelisted files includes:
gaining file level access to files from multiple storages that
have been backed up into the deduplication storage; and

comparing file attribute data stored in file system metadata
of each of the multiple backed-up storages to identify
common files having a size that is above a predetermined
threshold size.

4. The method as recited in claim 3, wherein the comparing
the file attribute data further includes comparing hashes,
stored in the deduplication storage, of blocks of the common
files to verify that the common files are identical.

20

16

5. The method as recited in claim 3, wherein the comparing
the file attribute data further includes comparing additional
file attribute data stored in blocks of files in the multiple
backed-up storages to identify common files.

6. The method as recited in claim 1, wherein the analyzing
the file attribute data further includes analyzing additional file
attribute data stored in blocks of the files that are stored in the
source storage.

7. The method as recited in claim 1, wherein the whitelisted
files includes a particular Windows Image Boot (WIMBoot)
file.

8. The method as recited in claim 1, further comprising:

a restore phase that is performed after completion of the
backup phase and that includes the following steps for
each of the blocks in the pruned set of allocated blocks:
reading the block from the deduplication storage; and
storing the block in the restore storage in a physical

location that matches the associated physical location
of the block as originally stored in the source storage
at the point in time.

9. One or more non-transitory computer-readable media
storing one or more programs that are configured, when
executed, to cause the one or more processors to execute the
method as recited in claim 1.

10. The method as recited in claim 1, wherein the
whitelisted files include files that have been seeded into the
deduplication storage.

11. The method as recited in claim 1, wherein the identi-
fying the whitelisted files includes analyzing files stored in
the deduplication storage to identify common files having a
size that is above a predetermined threshold size.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,081,792 B1 Page 1of1
APPLICATION NO. : 14/577152

DATED : July 14, 2015

INVENTOR(S) : Williams et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the specification
In Column 3, Line 4, delete “logical location of” and insert -- logical locations of --, therefor.

In Column 8, Line 59, delete “a fixed-state read-only.” and insert -- a fixed read-only state. --,
therefor.

In Column 8, Line 60, delete “In additional, other” and insert -- In addition, other --, therefor.
In Column 9, Line 1, delete “FIG. 3A, the” and insert -- FIG. 2A, the --, therefor.

In Column 12, Line 11, delete “whitelist phase™ and insert -- whitelist analysis phase --, therefor.

Signed and Sealed this
Twenty-ninth Day of November, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

